Evolving Modular Fast-Weight Networks for Control

نویسندگان

  • Faustino J. Gomez
  • Jürgen Schmidhuber
چکیده

In practice, almost all control systems in use today implement some form of linear control. However, there are many tasks for which conventional control engineering methods are not directly applicable because there is not enough information about how the system should be controlled (i.e. reinforcement learning problems). In this paper, we explore an approach to such problems that evolves fast-weight neural networks. These networks, although capable of implementing arbitrary non-linear mappings, can more easily exploit the piecewise linearity inherent in most systems, in order to produce simpler and more comprehensible controllers. The method is tested on 2D mobile robot version of the pole balancing task where the controller must learn to switch between two operating modes, one using a single pole and the other using a jointed pole version that has not before been solved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolving Symmetric and Modular Neural Network Controllers for Multilegged Robots

Controllers for multilegged robots are characterized by modularity and symmetry. However, the controller symmetries necessary for generating appropriate gaits are often difficult to determine analytically. This paper utilizes a nature-inspired approach called Evolution of Network Symmetry and mOdularity (ENSO) to evolve such controllers automatically. It uses group theory to mutate symmetry sys...

متن کامل

Spatially Constrained Networks and the Evolution of Modular Control Systems

This paper investigates the relationship between spatially embedded neural network models and modularity. It is hypothesised that spatial constraints lead to a greater chance of evolving modular structures. Firstly, this is tested in a minimally modular task/controller scenario. Spatial networks were shown to possess the ability to generate modular controllers which were not found in standard, ...

متن کامل

Evolving Reusable Neural Modules

Topology and Weight Evolving Artificial Neural Networks (TWEANNs) have been shown to be powerful in nonlinear optimization tasks such as double pole-balancing. However, if the input, output, or network structures are high dimensional, the search space may be too large to search efficiently. If the symmetries inherent in many large domains were correctly identified and used to break the problem ...

متن کامل

A Direct Power Feeding System for AC Railway Networks Using Modular Multilevel Converter

Abstract Traditional railway power supply systems impose substantial power quality problems (PQ) on the utility network, such as unbalance, harmonics and a large amount of reactive power. This paper proposes a topology based on three-phase to single-phase modular multilevel converters (MMC) to obviate these problems. The MMC based traction substations (TSS) are connected directly to the utili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005